Variational Methods for Machine Learning with Applications to Deep Networks
Cinelli, Lucas Pinheiro, Marins, Matheus Araújo, Barros da Silva, Eduardo Antônio, Netto, Sérgio Lima
Produktnummer:
1859f861fbc264448ba893ec9f384d73ec
Autor: | Barros da Silva, Eduardo Antônio Cinelli, Lucas Pinheiro Marins, Matheus Araújo Netto, Sérgio Lima |
---|---|
Themengebiete: | Approximate inference Artificial intelligence Bayesian deep learning Bayesian neural network Computer vision Deep neural networks Expectation propagation Machine theory Variational autoencoder Variational inference |
Veröffentlichungsdatum: | 11.05.2021 |
EAN: | 9783030706784 |
Sprache: | Englisch |
Seitenzahl: | 165 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Variational Methods for Machine Learning with Applications to Deep Networks"
This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere.Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning;Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes;Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen