Variable Lebesgue Spaces and Hyperbolic Systems
Cruz-Uribe, David, Fiorenza, Alberto, Ruzhansky, Michael, Wirth, Jens
Produktnummer:
18f9c21528477645ffacf844d00901f6dd
Autor: | Cruz-Uribe, David Fiorenza, Alberto Ruzhansky, Michael Wirth, Jens |
---|---|
Themengebiete: | Rubio de Francia extrapolation hyperbolic Cauchy problems maximal operators oscillating time-dependent coefficients partial differential equations singular integrals variable Lebesgue spaces |
Veröffentlichungsdatum: | 05.08.2014 |
EAN: | 9783034808392 |
Sprache: | Englisch |
Seitenzahl: | 170 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Tikhonov, Sergey |
Verlag: | Springer Basel |
Produktinformationen "Variable Lebesgue Spaces and Hyperbolic Systems"
This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts.Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen