Uncertainty Modeling for Data Mining
Qin, Zengchang, Tang, Yongchuan
Produktnummer:
1815d7b63368ca47bc98c3d75871aeb61c
Autor: | Qin, Zengchang Tang, Yongchuan |
---|---|
Themengebiete: | Computational Intelligence Data Mining Fuzzy Logic HEP Intelligent Systems |
Veröffentlichungsdatum: | 07.03.2014 |
EAN: | 9783642412509 |
Sprache: | Englisch |
Seitenzahl: | 291 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Untertitel: | A Label Semantics Approach |
Produktinformationen "Uncertainty Modeling for Data Mining"
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen