Triangular Products of Group Representations and Their Applications
Vovsi, S.M.
Produktnummer:
18a3c1be61be2e4425b16ec1de9c98f3f0
Autor: | Vovsi, S.M. |
---|---|
Themengebiete: | Finite Group representation Matrix Natural automorphism construction eXist field form group |
Veröffentlichungsdatum: | 25.02.2012 |
EAN: | 9781468467239 |
Sprache: | Englisch |
Seitenzahl: | 132 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Birkhäuser Boston |
Produktinformationen "Triangular Products of Group Representations and Their Applications"
The construction considered in these notes is based on a very simple idea. Let (A, G ) and (B, G ) be two group representations, for definiteness faithful and finite 1 2 dimensional, over an arbitrary field. We shall say that a faithful representation (V, G) is an extension of (A, G ) by (B, G ) if there is a G-submodule W of V such that 1 2 the naturally arising representations (W, G) and (V/W, G) are isomorphic, modulo their kernels, to (A, G ) and (B, G ) respectively. 1 2 Question. Among all the extensions of (A, G ) by (B, G ), does there exist 1 2 such a "universal" extension which contains an isomorphic copy of any other one? The answer is in the affirmative. Really, let dim A = m and dim B = n, then the groups G and G may be considered as matrix groups of degrees m and n 1 2 respectively. If (V, G) is an extension of (A, G ) by (B, G ) then, under certain 1 2 choice of a basis in V, all elements of G are represented by (m + n) x (m + n) mat rices of the form (*) ~1-~ ~-J lh I g2 I .

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen