Time Series Forecasting using Machine Learning
Ho, Tsung-wu
Produktnummer:
182581370a6cc541dea5d34b2cec49d75e
Autor: | Ho, Tsung-wu |
---|---|
Themengebiete: | Combination Forecasts Econometric Forecasting Neural network economic time series forecasting machine learning, multistep |
Veröffentlichungsdatum: | 19.09.2025 |
EAN: | 9783031979460 |
Sprache: | Englisch |
Seitenzahl: | 131 |
Produktart: | Unbekannt |
Verlag: | Springer International Publishing |
Untertitel: | Case Studies with R and iForecast |
Produktinformationen "Time Series Forecasting using Machine Learning"
This book uses R package, iForecast, to conduct financial economic time series forecasting with machine learning methods, especially the generation of dynamic forecasts out-of-sample. Machine learning methods cover enet, random forecast, gbm, and autoML etc., including binary economic time series. The book explains the problem about the generation of recursive forecasts in machine learning framework, under which, there are no covariates, namely, input (independent) variables. This case is pretty common in real decision environment, for example, the decision-making wants 6-month forecasts in the real future, under which there are no covariates available; therefore, practitioners use recursive or multistep, forecasts. Besides macro-econometric modelling which uses VAR (vector autoregression) to overcome the problem of multivariate regression, this book offers a Machine-Learning VAR routine, which is found to improve the performance of multistep forecasting.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen