The Universal Coefficient Theorem for C*-Algebras with Finite Complexity
Willett, Rufus, Yu, Guoliang
Produktnummer:
18c487782912a743b6bdeb541005abe401
Autor: | Willett, Rufus Yu, Guoliang |
---|---|
Themengebiete: | Universal Coefficient Theorem amenable C*-algebra controlled KK-theory decomposition of a C*-algebra |
Veröffentlichungsdatum: | 01.02.2024 |
EAN: | 9783985470662 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 100 |
Produktart: | Kartoniert / Broschiert |
Verlag: | EMS Press |
Produktinformationen "The Universal Coefficient Theorem for C*-Algebras with Finite Complexity"
A C*-algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and Schochet if it is equivalent in Kasparov’s KK-theory to a commutative C*-algebra. This paper is motivated by the problem of establishing the range of validity of the UCT, and in particular, whether the UCT holds for all nuclear C*-algebras. We introduce the idea of a C*-algebra that “decomposes” over a class ?? of C*-algebras. Roughly, this means that locally there are approximately central elements that approximately cut the C*-algebra into two C*-subalgebras from ?? that have well-behaved intersection. We show that if a C*-algebra decomposes over the class of nuclear, UCT C*-algebras, then it satisfies the UCT. The argument is based on a Mayer–Vietoris principle in the framework of controlled KK-theory; the latter was introduced by the authors in an earlier work. Nuclearity is used via Kasparov’s Hilbert module version of Voiculescu’s theorem, and Haagerup’s theorem that nuclear C*-algebras are amenable. We say that a C*-algebra has finite complexity if it is in the smallest class of C*-algebras containing the finitedimensional C*-algebras, and closed under decomposability; our main result implies that all C*-algebras in this class satisfy the UCT. The class of C*-algebras with finite complexity is large, and comes with an ordinal-number invariant measuring the complexity level. We conjecture that a C*-algebra of finite nuclear dimension and real rank zero has finite complexity; this (and several other related conjectures) would imply the UCT for all separable nuclear C*-algebras. We also give new local formulations of the UCT, and some other necessary and sufficient conditions for the UCT to hold for all nuclear C*-algebras.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen