The Spectrum of Hyperbolic Surfaces
Bergeron, Nicolas
Produktnummer:
189fe003c5a4f740d9877a036ab7b8b728
Autor: | Bergeron, Nicolas |
---|---|
Themengebiete: | Arithmetic manifolds Hyperbolic surfaces Laplacian Maass forms Quantum chaos Selberg trace formula |
Veröffentlichungsdatum: | 02.03.2016 |
EAN: | 9783319276649 |
Sprache: | Englisch |
Seitenzahl: | 370 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "The Spectrum of Hyperbolic Surfaces"
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen