The Elements of Statistical Learning
Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome
Produktnummer:
180152aa0626884f9694a428f72e282a42
Autor: | Friedman, Jerome Hastie, Trevor Tibshirani, Robert |
---|---|
Themengebiete: | Averaging Boosting Projection pursuit Random Forest Support Vector Machine classification clustering data mining machine learning supervised learning |
Veröffentlichungsdatum: | 09.02.2009 |
EAN: | 9780387848570 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 745 |
Produktart: | Gebunden |
Verlag: | Springer US |
Untertitel: | Data Mining, Inference, and Prediction, Second Edition |
Produktinformationen "The Elements of Statistical Learning"
This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen