Stochastic Exponential Growth and Lattice Gases
Pirjol, Dan
Produktnummer:
18ae59af829d0741bea056ee50c0681e55
Autor: | Pirjol, Dan |
---|---|
Themengebiete: | Black-Derman-Toy model Black-Karasinski model Lyapunov exponents lattice gases one-dimensional exactly solvable models phase transitions |
Veröffentlichungsdatum: | 02.09.2022 |
EAN: | 9783031111426 |
Sprache: | Englisch |
Seitenzahl: | 132 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Statistical Mechanics of Stochastic Compounding Processes |
Produktinformationen "Stochastic Exponential Growth and Lattice Gases"
The book discusses a class of discrete time stochastic growth processes for which the growth rate is proportional to the exponential of a Gaussian Markov process. These growth processes appear naturally in problems of mathematical finance as discrete time approximations of stochastic volatility models and stochastic interest rates models such as the Black-Derman-Toy and Black-Karasinski models. These processes can be mapped to interacting one-dimensional lattice gases with long-range interactions. The book gives a detailed discussion of these statistical mechanics models, including new results not available in the literature, and their implication for the stochastic growth models. The statistical mechanics analogy is used to understand observed non-analytic dependence of the Lyapunov exponents of the stochastic growth processes considered, which is related to phase transitions in the lattice gas system. The theoretical results are applied to simulations of financial models and are illustrated with Mathematica code. The book includes a general introduction to exponential stochastic growth with examples from biology, population dynamics and finance. The presentation does not assume knowledge of mathematical finance. The new results on lattice gases can be read independently of the rest of the book. The book should be useful to practitioners and academics studying the simulation and application of stochastic growth models.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen