Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Statistical Mechanics of Mean-Field Disordered Systems

59,00 €*

Versandkostenfrei

Produktnummer: 18a699aab864574014a4e8be98c96b7ef5
Autor: Dominguez, Tomas Mourrat, Jean-Christophe
Themengebiete: Curie–Weiss model Hamilton–Jacobi equation spin glasses statistical inference statistical mechanics
Veröffentlichungsdatum: 01.05.2024
EAN: 9783985470747
Auflage: 1
Sprache: Englisch
Seitenzahl: 361
Produktart: Kartoniert / Broschiert
Verlag: EMS Press
Untertitel: A Hamilton–Jacobi Approach
Produktinformationen "Statistical Mechanics of Mean-Field Disordered Systems"
The goal of this book is to present new mathematical techniques for studying the behavior of mean-field systems with disordered interactions. We mostly focus on certain problems of statistical inference in high dimension, and on spin glasses. The techniques we present aim to determine the free energy of these systems, in the limit of large system size, by showing that they asymptotically satisfy a Hamilton–Jacobi equation. The first chapter is a general introduction to statistical mechanics, with a focus on the Curie–Weiss model. We give a brief introduction to convex analysis and large deviation principles in Chapter 2, and identify the limit free energy of the Curie–Weiss model using these tools. In Chapter 3, we define the notion of viscosity solution to a Hamilton–Jacobi equation, and use it to recover the limit free energy of the Curie–Weiss model. We discover technical challenges to applying the same method to generalized versions of the Curie–Weiss model, and develop a new selection principle based on convexity to overcome these. We then turn to statistical inference in Chapter 4, focusing on the problem of recovering a large symmetric rank-one matrix from a noisy observation, and we see that the tools developed in the previous chapter apply to this setting as well. Chapter 5 is preparatory work for a discussion of the more challenging case of spin glasses. The first half of this chapter is a self-contained introduction to Poisson point processes, including limit theorems on extreme values of independent and identically distributed random variables. We finally turn to the setting of spin glasses in Chapter 6. For the Sherrington–Kirkpatrick model, we show how to relate the Parisi formula with the Hamilton–Jacobi approach. We conclude with a more informal discussion on the status of current research for more challenging models.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen