Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Smart Process Engineering - Using Artificial Intelligence Tools to Learn from Graph-based Chemical Plant and Process Data

42,00 €*

Versandkostenfrei

Produktnummer: 189458c9828deb4a828c487f62328b3914
Autor: Oeing, Jonas Eric
Themengebiete: Artificial Intelligence Graph Learning Process Industry
Veröffentlichungsdatum: 12.12.2023
EAN: 9783843953986
Sprache: Englisch
Seitenzahl: 183
Produktart: Kartoniert / Broschiert
Verlag: Dr. Hut
Produktinformationen "Smart Process Engineering - Using Artificial Intelligence Tools to Learn from Graph-based Chemical Plant and Process Data"
While Artificial Intelligence (AI) methods are already present in many consumer applications, they are currently less used and accepted in the process industry and in the field of engineering. At the same time, the availability of digital engineering data is increasing due to the increasing digitization and standardization of data formats, for example DEXPI (Data Exchange in Process Industry). This work provides answers concerning important questions that need to be addressed when applying AI methods in engineering. How must plant data be structured and which standards can already be accessed? Which areas of engineering are promising for the application of AI methods and which models can be used? In this context, new and innovative approaches for data-driven modeling of engineering data will be introduced, applied and evaluated. A graph-based, machine-learning information model is used to provide a basis for describing information from plant topologies in the form of a piping and instrumentation diagram (P&ID) and process simulations based on unit operations. The use of machine learning models enables to learn the relationship between process data and separation units in conceptual engineering to support the generation of downstream processes. In detail engineering, AI algorithms are used that learn the topology of process units. In this way, Recurrent Neural Networks predict P&ID components, while Graph Neural Networks check the consistency to support the engineering and drawing of P&IDs. The combination of the graph-based information model with a deterministic algorithm also enables automated safety assessments in an early engineering and design phase. The different modeling approaches will be validated in initial feasibility studies and integrated into a smart engineering workflow and first prototype applications as part of this work.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen