Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes
Positselski, Leonid
Produktnummer:
188e85414c80dd4abea593f6afdc92de5f
Autor: | Positselski, Leonid |
---|---|
Themengebiete: | Algebraic Geometry Commutative Rings Ind-schemes Semiderived Category Torsion Sheaves |
Veröffentlichungsdatum: | 16.09.2024 |
EAN: | 9783031379079 |
Sprache: | Englisch |
Seitenzahl: | 216 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Quasi-Coherent Torsion Sheaves, the Semiderived Category, and the Semitensor Product |
Produktinformationen "Semi-Infinite Algebraic Geometry of Quasi-Coherent Sheaves on Ind-Schemes"
Semi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled Homological Algebra of Semimodules and Semicontramodules, (Birkhäuser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent torsion sheaves and flat pro-quasi-coherent pro-sheaves on ind-schemes are discussed at length in this book, making it suitable for use as an introduction to the theory of quasi-coherent sheaves on ind-schemes. The main output of the homological theory developed in this monograph is the functor of semitensor product on the semiderived category of quasi-coherent torsion sheaves, endowing the semiderived category with the structure of a tensor triangulated category. The author offers two equivalent constructions of the semitensorproduct, as well as its particular case, the cotensor product, and shows that they enjoy good invariance properties. Several geometric examples are discussed in detail in the book, including the cotangent bundle to an infinite-dimensional projective space, the universal fibration of quadratic cones, and the important popular example of the loop group of an affine algebraic group.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen