Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Robust Adaptive and Anticipative Tracking Model Predictive Control

58,80 €*

Versandkostenfrei

Produktnummer: 18593c49b81a9f4b1db21a6f0815624d30
Autor: Peschke, Tobias
Themengebiete: Adaptive Tracking Anticipative Tracking Model Predictive Control Self-Propelled Work Machines
Veröffentlichungsdatum: 28.05.2024
EAN: 9783844094848
Auflage: 1
Sprache: Englisch
Seitenzahl: 180
Produktart: Kartoniert / Broschiert
Verlag: Shaker
Untertitel: with Application to Self-Propelled Work Machines
Produktinformationen "Robust Adaptive and Anticipative Tracking Model Predictive Control"
Most control applications need to operate under constraints regarding system inputs, states and outputs. Model Predictive Control (MPC) is an advanced control method which allows for an easy integration of input, state and output constraints into the control algorithm. However, closed-loop system properties as stability and recursive feasibility cannot be guaranteed if the internal model deviates from the true system. Robust MPC methods address this issue by explicitly considering model uncertainty inside the control algorithm. However, control performance may degrade significantly due to an overly conservative consideration of the model uncertainty. This thesis presents methods how to incorporate adaptive and anticipative knowledge into robust MPC algorithms. It is shown how different levels of anticipative knowledge increase control performance. The computationally efficient integration of anticipative knowledge into robust tube-based MPC algorithms enables the use in real-world applications. Many control applications are formulated as a tracking problem whereas most robust MPC schemes only consider the regulation problem. In this thesis, robust tracking MPC algorithms are presented which incorporate changing tracking targets in an effective way. Moreover, adaptive control methods are included into a robust tube-based tracking MPC algorithm. The advantages are highlighted by a simulation example for a self-propelled work machine. Anticipative knowledge is especially useful for throughput control of self-propelled work machines. Anticipative MPC algorithms for self-propelled work machines are presented which consider constraints on ride comfort and engine load. The effectiveness of the approach is highlighted by simulation and field test data.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen