Recurrent Neural Networks for Short-Term Load Forecasting
Bianchi, Filippo Maria, Maiorino, Enrico, Kampffmeyer, Michael C., Rizzi, Antonello, Jenssen, Robert
Produktnummer:
187bfa5566ef1441c981b9183776529655
Autor: | Bianchi, Filippo Maria Jenssen, Robert Kampffmeyer, Michael C. Maiorino, Enrico Rizzi, Antonello |
---|---|
Themengebiete: | Echo state networks Gated Recurrent Units, Load forecasting NARX networks Recurrent neural networks Time-series prediction |
Veröffentlichungsdatum: | 17.11.2017 |
EAN: | 9783319703374 |
Sprache: | Englisch |
Seitenzahl: | 72 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | An Overview and Comparative Analysis |
Produktinformationen "Recurrent Neural Networks for Short-Term Load Forecasting"
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system.Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen