Real Homotopy of Configuration Spaces
Idrissi, Najib
Produktnummer:
1892fd7e86f01142799791a346dbffe81d
Autor: | Idrissi, Najib |
---|---|
Themengebiete: | Configuration Spaces of Manifolds Factorization Homology Fulton-MacPherson Compactifications Homotopy Invariants of Manifolds Kontsevich Integrals Operad Theory Poincaré Duality Models Rational Homotopy Theory Semi-algebraic Forms Sullivan Models of Spaces |
Veröffentlichungsdatum: | 12.06.2022 |
EAN: | 9783031044274 |
Sprache: | Englisch |
Seitenzahl: | 187 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Peccot Lecture, Collège de France, March & May 2020 |
Produktinformationen "Real Homotopy of Configuration Spaces"
This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory’s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen