Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen
Haake, Daniel
Produktnummer:
18a514000161bb400db17de1ee3b22bdda
Autor: | Haake, Daniel |
---|---|
Themengebiete: | Artificial Intelligence Data Science Kriminologie Machine Learning Polizei Predictive Policing |
Veröffentlichungsdatum: | 28.05.2022 |
EAN: | 9783658376598 |
Sprache: | Deutsch |
Seitenzahl: | 90 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Fachmedien Wiesbaden GmbH |
Produktinformationen "Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Algorithmen"
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen