Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Pro Deep Learning with TensorFlow 2.0

64,19 €*

Versandkostenfrei

Produktnummer: 182cbfc8d9f80b4173bdbb3c5989bf574f
Autor: Pattanayak, Santanu
Themengebiete: Boltzmann Deep Learning Architectures Convolutional Neural networks Deep Learning Generative Adversial Networks Kullback Lieber Divergence Machine Learning Natural Language Processing Python Recurrent Neural Networks TensorFlow
Veröffentlichungsdatum: 01.01.2023
EAN: 9781484289303
Auflage: 2
Sprache: Englisch
Seitenzahl: 652
Produktart: Kartoniert / Broschiert
Verlag: APRESS
Untertitel: A Mathematical Approach to Advanced Artificial Intelligence in Python
Produktinformationen "Pro Deep Learning with TensorFlow 2.0"
This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0.Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You’ll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you’ll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.What You Will LearnUnderstand full-stack deep learning using TensorFlow 2.0Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0Understand generative adversarial networks, graph attention networks, and GraphSAGEWho This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen