Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Praxisbuch Unsupervised Learning

39,90 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 16A38907583
Autor: Patel, Ankur A.
Themengebiete: Data Mining (EDV) Programmiersprachen
Veröffentlichungsdatum: 01.03.2020
EAN: 9783960091271
Sprache: Deutsch
Seitenzahl: 358
Produktart: Kartoniert / Broschiert
Verlag: Dpunkt.Verlag GmbH O'Reilly
Untertitel: Machine-Learning-Anwendungen für ungelabelte Daten mit Python programmieren
Produktinformationen "Praxisbuch Unsupervised Learning"
Entdecken Sie Muster in Daten, die für den Menschen nicht erkennbar sind Unsupervised Learning könnte der Schlüssel zu einer umfassenderen künstlichen Intelligenz sein Voller praktischer Techniken für die Arbeit mit ungelabelten Daten, verständlich geschrieben und mit unkomplizierten Python-Beispielen Verwendet Scikit-learn, TensorFlow und Keras Ein Großteil der weltweit verfügbaren Daten ist ungelabelt. Auf diese nicht klassifizierten Daten lassen sich die Techniken des Supervised Learning, die im Machine Learning viel genutzt werden, nicht anwenden. Dagegen kann das Unsupervised Learning - auch unüberwachtes Lernen genannt - für ungelabelte Datensätze eingesetzt werden, um aussagekräftige Muster zu entdecken, die tief in den Daten verborgen sind. Muster, die für den Menschen fast unmöglich zu entdecken sind. Wie Data Scientists Unsupervised Learning für ihre Daten nutzen können, zeigt Ankur Patel in diesem Buch anhand konkreter Beispiele, die sich schnell und effektiv umsetzen lassen. Sie erfahren, wie Sie schwer zu findende Muster in Daten herausarbeiten und dadurch z.B. tiefere Einblicke in Geschäftsprozesse gewinnen. Sie lernen auch, wie Sie Anomalien erkennen, automatisches Feature Engineering durchführen oder synthetische Datensätze generieren. Aus dem Inhalt Vergleichen Sie die Stärken und Schwächen der verschiedenen Ansätze des Machine Learning: Supervised, Unsupervised und Reinforcement Learning Richten Sie ein Machine-Learning-Projekt ein und verwalten Sie es Bauen Sie ein System für die Anomalieerkennung auf, um Kreditkartenbetrug zu erfassen Nutzen Sie Clustering-Algorithmen, um Benutzer in unterschiedliche und homogene Gruppen zusammenzufassen Führen Sie Semi-supervised Learning durch Entwickeln Sie Filmempfehlungssysteme mit eingeschränkten Boltzmann-Maschinen Generieren Sie synthetische Bilder mit Generative Adversarial Networks (GANs)
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen