Perfect Lattices in Euclidean Spaces
Martinet, Jacques
Produktnummer:
1866af1a6cca4e4020aea7c3a580168f60
Autor: | Martinet, Jacques |
---|---|
Themengebiete: | Euclidean lattices Symbol coding theory combinatorics eutactic lattices number theory perfect lattices sphere packings |
Veröffentlichungsdatum: | 10.12.2002 |
EAN: | 9783540442363 |
Sprache: | Englisch |
Seitenzahl: | 526 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Produktinformationen "Perfect Lattices in Euclidean Spaces"
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3.This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property.Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290.Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen