Partial Differential Equations
Arendt, Wolfgang, Urban, Karsten
Produktnummer:
18a543c00031dd4267a6c09db6924be2ec
Autor: | Arendt, Wolfgang Urban, Karsten |
---|---|
Themengebiete: | Hilbert space methods for solving PDEs Maple for PDEs Sobolev spaces for partial differential equations elementary methods for solving PDEs finite difference method finite element method numerical methods for solving PDEs partial differential equations analytical and numerical approach partial differential equations modeling partial differential equations textbook |
Veröffentlichungsdatum: | 02.01.2023 |
EAN: | 9783031133787 |
Sprache: | Englisch |
Seitenzahl: | 452 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | An Introduction to Analytical and Numerical Methods |
Produktinformationen "Partial Differential Equations"
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach.A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses onfinite difference and finite element methods. Computer-aided calculation with Maple™ completes the book. Throughout, three fundamental examples are studied with different tools: Poisson’s equation, the heat equation, and the wave equation on Euclidean domains. The Black–Scholes equation from mathematical finance is one of several opportunities for extension.Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen