Parameter Estimation in Stochastic Volatility Models
Bishwal, Jaya P. N.
Produktnummer:
1811fa803913274b6fbc251bea18474bd8
Autor: | Bishwal, Jaya P. N. |
---|---|
Themengebiete: | Ito stochastic differential equation discrete observations fractional Brownian motion fractional Levy poses high frequency data jumps long memory parameter estimation partially observed models stochastic volatility model |
Veröffentlichungsdatum: | 07.08.2023 |
EAN: | 9783031038631 |
Sprache: | Englisch |
Seitenzahl: | 613 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Parameter Estimation in Stochastic Volatility Models"
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen