Open Problems in Spectral Dimensionality Reduction
Strange, Harry, Zwiggelaar, Reyer
Produktnummer:
186e2569db334140ce972a74f1c4f4d003
Autor: | Strange, Harry Zwiggelaar, Reyer |
---|---|
Themengebiete: | Big Data Machine Learning Manifold Learning Algorithms Nonlinear Dimensionality Reduction (NLDR) Principal Component Analysis (PCA) algorithm analysis and problem complexity data structures |
Veröffentlichungsdatum: | 21.01.2014 |
EAN: | 9783319039428 |
Sprache: | Englisch |
Seitenzahl: | 92 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Open Problems in Spectral Dimensionality Reduction"
The last few years have seen a great increase in the amount of data available to scientists, yet many of the techniques used to analyse this data cannot cope with such large datasets. Therefore, strategies need to be employed as a pre-processing step to reduce the number of objects or measurements whilst retaining important information. Spectral dimensionality reduction is one such tool for the data processing pipeline. Numerous algorithms and improvements have been proposed for the purpose of performing spectral dimensionality reduction, yet there is still no gold standard technique. This book provides a survey and reference aimed at advanced undergraduate and postgraduate students as well as researchers, scientists, and engineers in a wide range of disciplines. Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen