Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

On the Problem of Plateau / Subharmonic Functions

53,49 €*

Versandkostenfrei

Produktnummer: 18c602b489f6694a7ca7848500f134a1b2
Autor: Rado, T.
Themengebiete: Functions Plateausches Problem Problem of Plateau Subharmonische Funktion function minimum subharmonic function
Veröffentlichungsdatum: 04.01.1971
EAN: 9783540054795
Sprache: Englisch
Seitenzahl: 109
Produktart: Kartoniert / Broschiert
Verlag: Springer Berlin
Produktinformationen "On the Problem of Plateau / Subharmonic Functions"
A convex function f may be called sublinear in the following sense; if a linear function l is ::=: j at the boundary points of an interval, then l:> j in the interior of that interval also. If we replace the terms interval and linear junction by the terms domain and harmonic function, we obtain a statement which expresses the characteristic property of subharmonic functions of two or more variables. This ge neralization, formulated and developed by F. RIEsz, immediately at tracted the attention of many mathematicians, both on account of its intrinsic interest and on account of the wide range of its applications. If f (z) is an analytic function of the complex variable z = x + i y. then If (z) I is subharmonic. The potential of a negative mass-distribu tion is subharmonic. In differential geometry, surfaces of negative curvature and minimal surfaces can be characterized in terms of sub harmonic functions. The idea of a subharmonic function leads to significant applications and interpretations in the fields just referred to, and· conversely, every one of these fields is an apparently in exhaustible source of new theorems on subharmonic functions, either by analogy or by direct implication.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen