On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling
Salazar, Addisson
Produktnummer:
18da2326053c6a4f98889e135b2ff34783
Autor: | Salazar, Addisson |
---|---|
Themengebiete: | Classification of Archaeological Ceramics Image Processing Impact-echo Measurements Independent Component Analysis (ICA) Independent Component Analysis Mixture Machine Learning Modelling (ICAMM) Non-parametric Density Estimation PhD Thesis Semi-supervised Learning |
Veröffentlichungsdatum: | 09.08.2014 |
EAN: | 9783642428753 |
Sprache: | Englisch |
Seitenzahl: | 186 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling"
A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen