Non-linear Elliptic Equations in Conformal Geometry
Chang, Sun-Yung Alice
Produktnummer:
18d1809c45de4f4793bfaff1fb321bc15a
Autor: | Chang, Sun-Yung Alice |
---|---|
Themengebiete: | Conformal geometry Elliptic equations Sobolev inequalities |
Veröffentlichungsdatum: | 02.11.2004 |
EAN: | 9783037190067 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 92 |
Produktart: | Kartoniert / Broschiert |
Verlag: | EMS Press |
Produktinformationen "Non-linear Elliptic Equations in Conformal Geometry"
Non-linear elliptic partial differential equations are an important tool in the study of Riemannian metrics in differential geometry, in particular for problems concerning the conformal change of metrics in Riemannian geometry. In recent years the role played by the second order semi-linear elliptic equations in the study of Gaussian curvature and scalar curvature has been extended to a family of fully non-linear elliptic equations associated with other symmetric functions of the Ricci tensor. A case of particular interest is the second symmetric function of the Ricci tensor in dimension four closely related to the Pfaffian. In these lectures, starting from the background material, the author reviews the problem of prescribing Gaussian curvature on compact surfaces. She then develops the analytic tools (e.g. higher order conformal invariant operators, Sobolev inequalities, blow-up analysis) in order to solve a fully nonlinear equation in prescribing the Chern-Gauss-Bonnet integrand on compact manifolds of dimension four.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen