Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Neuronale Netze und Deep Learning kapieren

29,99 €*

Versandkostenfrei

Produktnummer: 16A38223096
Autor: Trask, Andrew W.
Themengebiete: Intelligenz / Künstliche Intelligenz KI Künstliche Intelligenz - AI Lernen Mustererkennung
Veröffentlichungsdatum: 01.12.2019
EAN: 9783747500156
Sprache: Deutsch
Seitenzahl: 354
Produktart: Kartoniert / Broschiert
Verlag: MITP Verlags GmbH mitp Verlags GmbH & Co.KG
Untertitel: Der einfache Praxiseinstieg mit Beispielen in Python
Produktinformationen "Neuronale Netze und Deep Learning kapieren"
Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen. Aus dem Inhalt: Parametrische und nichtparametrische Modelle Überwachtes und unüberwachtes Lernen Vorhersagen mit mehreren Ein- und Ausgaben Fehler messen und verringern Hot und Cold Learning Batch- und stochastischer Gradientenabstieg Überanpassung vermeiden Generalisierung Dropout-Verfahren Backpropagation und Forward Propagation Bilderkennung Verarbeitung natürlicher Sprache (NLP) Sprachmodellierung Aktivierungsfunktionen Sigmoid-Funktion Tangens hyperbolicus Softmax Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs) Long Short-Term Memory (LSTM) Deep-Learning-Framework erstellen
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen