Multiple Integrals in Calculus
Georgiev, Svetlin G., Zennir, Khaled
Produktnummer:
1874e6564353d04cba8eb8f5bbbc3640b6
Autor: | Georgiev, Svetlin G. Zennir, Khaled |
---|---|
Themengebiete: | Continuous Functions of Finite Variation Curvilinear integrals Functions of Several Variables Funktionen mehrerer Variablen Improper Multiple Integrals Kontinuierliche Funktionen endlicher Variation Krummlinige Integrale Stieltjes-Integrale Stieltjes integrals Uneigentliche Mehrfachintegrale |
Veröffentlichungsdatum: | 07.11.2025 |
EAN: | 9783119143455 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 396 |
Produktart: | Kartoniert / Broschiert |
Verlag: | De Gruyter |
Untertitel: | Improper Integrals, Line Integrals, Surface Integrals |
Produktinformationen "Multiple Integrals in Calculus"
The book consists of eight chapters, each focusing on different aspects of multiple integrals and related topics in mathematical analysis.In Chapter 1, multiple integrals are defined and developed. The Jordan measure in n-dimensional unit balls is introduced, along with the definition and criteria for multiple integrals, as well as their properties. Chapter 2 delves into advanced techniques for computing multiple integrals. It introduces the Taylor formula, discusses linear maps on measurable sets, and explores the metric properties of differentiable maps. In Chapter 3, we focus on improper multiple integrals and their properties. The chapter deduces criteria for the integrability of functions of several variables and develops concepts such as improper integrals of nonnegative functions, comparison criteria, and absolute convergence. Chapter 4 investigates the Stieltjes integral and its properties. Topics covered include the differentiation of monotone functions of finite variation and the Helly principle of choice, as well as continuous functions of finite variation. Chapter 5 addresses curvilinear integrals, defining line integrals of both the first and second kinds. It also discusses the independence of line integrals from the path of integration. In Chapter 6, surface integrals of the first and second kinds are introduced. The chapter presents the Gauss-Ostrogradsky theorem and Stokes’ formulas, along with advanced practical problems to practice these concepts.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen