Monomial Ideals, Computations and Applications
Produktnummer:
18ce84f34b4b034409898dab8b84c8a953
Themengebiete: | 13-02,13C15,13D45,13F55 Computational aspects Edge Ideals Local cohomology Monomial Ideals Stanley depth |
---|---|
Veröffentlichungsdatum: | 03.09.2013 |
EAN: | 9783642387418 |
Sprache: | Englisch |
Seitenzahl: | 194 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Bigatti, Anna M. Gimenez, Philippe Sáenz-de-Cabezón, Eduardo |
Verlag: | Springer Berlin |
Produktinformationen "Monomial Ideals, Computations and Applications"
This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the development of algorithms to work with them and then generate algorithms for more general structures.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen