Maximum Penalized Likelihood Estimation
Eggermont, Paul P., LaRiccia, Vincent N.
Produktnummer:
18ac7315606bda477d84f4fe607fff931d
Autor: | Eggermont, Paul P. LaRiccia, Vincent N. |
---|---|
Themengebiete: | Confidence bands Estimator Kalman filter for smoothing splines. Likelihood Local polynomials Nonparametric regression Reproducing kernel Hilbert spaces Smoothing splines Uniform error bounds data analysis |
Veröffentlichungsdatum: | 06.07.2009 |
EAN: | 9780387402673 |
Sprache: | Englisch |
Seitenzahl: | 572 |
Produktart: | Gebunden |
Verlag: | Springer US |
Untertitel: | Volume II: Regression |
Produktinformationen "Maximum Penalized Likelihood Estimation"
This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in s- tistics, operationsresearch, andappliedmathematics, aswellasresearchers and practitioners in the ?eld. The present volume was supposed to have a short chapter on nonparametric regression but was intended to deal mainly with inverse problems. However, the chapter on nonparametric regression kept growing to the point where it is now the only topic covered. Perhaps there will be a Volume III. It might even deal with inverse problems. But for now we are happy to have ?nished Volume II. The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. We study smoothing splines and local polynomials in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is thatlettingtheinnerproductdependonthesmoothingparameteropensup new possibilities: It leads to asymptotically equivalent reproducing kernel estimators (without quali?cations) and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and, via strong approximations, to con?dence bands for the unknown regression function. ItcameassomewhatofasurprisethatreproducingkernelHilbert space ideas also proved useful in the study of local polynomial estimators.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen