Maximum Penalized Likelihood Estimation
Eggermont, P.P.B., LaRiccia, Vincent N.
Produktnummer:
18038e6b05b8df4048a370828fde646519
Autor: | Eggermont, P.P.B. LaRiccia, Vincent N. |
---|---|
Themengebiete: | Density Estimation Maximum Likelihood Maximum Penalized Likelihood convex minimization problems discrete parameter submartingales nonparametric estimation |
Veröffentlichungsdatum: | 21.06.2001 |
EAN: | 9780387952680 |
Sprache: | Englisch |
Seitenzahl: | 512 |
Produktart: | Gebunden |
Verlag: | Springer US |
Untertitel: | Volume I: Density Estimation |
Produktinformationen "Maximum Penalized Likelihood Estimation"
This book is intended for graduate students in statistics and industrial mathematics, as well as researchers and practitioners in the field. We cover both theory and practice of nonparametric estimation. The text is novel in its use of maximum penalized likelihood estimation, and the theory of convex minimization problems (fully developed in the text) to obtain convergence rates. We also use (and develop from an elementary view point) discrete parameter submartingales and exponential inequalities. A substantial effort has been made to discuss computational details, and to include simulation studies and analyses of some classical data sets using fully automatic (data driven) procedures. Some theoretical topics that appear in textbook form for the first time are definitive treatments of I.J. Good's roughness penalization, monotone and unimodal density estimation, asymptotic optimality of generalized cross validation for spline smoothing and analogous methods for ill-posed least squares problems, and convergence proofs of EM algorithms for random sampling problems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen