Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Mathematik für Physiker

49,95 €*

Versandkostenfrei

Produktnummer: 16A107377
Themengebiete: Experimentalphysik Mathematik / Physik, Chemie Physiker
Veröffentlichungsdatum: 01.01.1994
EAN: 9783528930523
Auflage: 010
Sprache: Deutsch
Seitenzahl: 244
Produktart: Kartoniert / Broschiert
Herausgeber: Weltner, Klaus
Verlag: Vieweg & Teubner Vieweg+Teubner Verlag
Untertitel: Basiswissen für das Grundstudium der Experimentalphysik Lehrbuch Band 2
Produktinformationen "Mathematik für Physiker"
13 Funktionen mehrerer Variablen, skalare Felder und Vektorfelder.- 13.1 Einleitung.- 13.2 Der Begriff der Funktion mehrerer Variablen.- 13.3 Das skalare Feld.- 13.4 Das Vektorfeld.- 13.5 Spezielle Vektorfelder.- 13.6 Übungsaufgaben.- 14 Partielle Ableitung, totales Differential und Gradient.- 14.1 Die partielle Ableitung.- 14.2 Das totale Differential.- 14.3 Der Gradient.- 14.4 Übungsaufgaben.- 15 Mehrfachintegrale, Koordinatensysteme.- 15.1 Mehrfachintegrale als Lösung von Summierungsaufgaben.- 15.2 Mehrfachintegrale mit konstanten Integrationsgrenzen.- 15.3 Zerlegung eines Mehrfachintegrals in ein Produkt von Integralen.- 15.4 Koordinaten.- 15.5 Anwendungen: Volumen und Trägheitsmoment.- 15.6 Mehrfachintegrale mit nicht konstanten Integrationsgrenzen.- 15.7 Kreisfläche in kartesischen Koordinaten.- 15.8 Übungsaufgaben.- 16 Parameterdarstellung, Linienintegral.- 16.1 Parameterdarstellung von Kurven.- 16.2 Differentiation eines Vektors nach einem Parameter.- 16.3 Das Linienintegral.- 16.4 Übungsaufgaben.- 17 Oberflächenintegrale.- 17.1 Der Vektorfluß durch eine Fläche.- 17.2 Das Oberflächenintegral.- 17.3 Berechnung des Oberflächenintegrals für Spezialfälle.- 17.4 Berechnung des Oberflächenintegrals im allgemeinen Fall.- 17.5 Fluß des elektrischen Feldes einer Punktladung durch eine Kugeloberfläche mit Radius R.- 17.6 Übungsaufgaben.- 18 Divergenz und Rotation.- 18.1 Divergenz eines Vektorfeldes.- 18.2 Integralsatz von Gauß.- 18.3 Rotation eines Vektorfeldes.- 18.4 Integralsatz von Stokes.- 18.5 Potential eines Vektorfeldes.- 18.6 Anhang.- 18.7 Übungsaufgaben.- 19 Koordinatentransformationen und Matrizen.- 19.1 Koordinatenverschiebungen - Translationen.- 19.2 Drehungen.- 19.3 Matrizenrechnung.- 19.4 Darstellung von Drehungen in Matrizenform.- 19.5Spezielle Matrizen.- 19.6 Inverse Matrix.- 19.7 Übungsaufgaben.- 20 Lineare Gleichungssysteme und Determinanten.- 20.1 Lineare Gleichungssysteme.- 20.2 Determinanten.- 20.3 Übungsaufgaben.- 21 Eigenwerte und Eigenvektoren.- 21.1 Eigenwerte von 2 · 2 Matrizen.- 21.2 Bestimmung von Eigenwerten.- 21.3 Eigenwerte und Eigenvektoren einer 3x3 Matrix.- 21.4 Eigenschaften von Eigenwerten und Eigenvektoren.- 21.5 Übungsaufgaben.- 22 Fourierreihen.- 22.1 Entwicklung einer periodischen Funktion in eine Fourierreihe.- 22.2 Beispiele für Fourierreihen.- 22.3 Die Fourierreihe für Funktionen beliebiger Periode T.- 22.4 Fourierreihe in spektraler Darstellung.- 22.5 Übungsaufgaben.- 23 Fourier-Integrale.- 23.1 Übergang von der Fourierreihe zum Fourier-Integral.- 23.2 Fourier-Transformationen.- 23.3 Verschiebungssatz.- 23.4 Diskrete Fourier-Transformation, Abtasttheorem.- 23.5 Fourier-Transformation der Gaußschen Funktion.- 23.6 Übungsaufgaben.- 24 Laplace-Transformationen.- 24.1 Integral-Transformationen, Laplace-Transformationen.- 24.2 Laplace-Transformation von Standardfunktionen und allgemeine Regeln.- 24.3 Lösung von linearen Differentialgleichungen mit konstanten Koeffizienten.- 24.4 Lösung von simultanen Differentialgleichungen mit konstanten Koeffizienten.- 24.5 Übungsaufgaben.- 25 Die Wellengleichungen.- 25.1 Wellenfunktionen.- 25.2 Die Wellengleichung.- 25.3 Übungsaufgaben.- Sachwortverzeichnis.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen