Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Machine Learning und KI kompakt

34,90 €*

Versandkostenfrei

Produktnummer: 16A50127449
Autor: Raschka, Sebastian
Themengebiete: Intelligenz / Künstliche Intelligenz KI Künstliche Intelligenz - AI Programmiersprachen
Veröffentlichungsdatum: 01.02.2025
EAN: 9783988890313
Sprache: Deutsch
Seitenzahl: 240
Produktart: Kartoniert / Broschiert
Verlag: "dpunkt.verlag GmbH" dpunkt.Verlag
Untertitel: Zentrale Konzepte verstehen und anwenden
Produktinformationen "Machine Learning und KI kompakt"
Vertiefendes Wissen von Deep Learning über Computer Vision bis Natural Language Processing - Schließt die Lücke zwischen Grundlagen und Profiwissen - Einfache, prägnante Erklärungen zu wichtigen und aktuellen Themen - Mit Übungsaufgaben sowie Codebeispielen auf GitHub Sie verfügen bereits über Grundkenntnisse zu maschinellem Lernen und künstlicher Intelligenz, haben aber viele Fragen und wollen tiefer in wesentliche und aktuelle Konzepte eintauchen? ML- und KI-Experte Sebastian Raschka greift in diesem Buch die wichtigsten Schlüsselfragen auf und liefert sowohl prägnante als auch einfach verständliche Erklärungen zu komplexen und fortgeschrittenen Themen wie Deep Learning, Überanpassung, Self-Supervised Learning, generative KI, Computer Vision, Natural Language Processing und Modellevaluierung. Viele Beispiele, anschauliche Illustrationen und praktische Übungsaufgaben helfen Ihnen dabei, das Erlernte nicht nur schnell zu verstehen, sondern auch praktisch umzusetzen. Dabei werden weder fortgeschrittene Mathematik- noch Programmierkenntnisse vorausgesetzt - wer tiefer in den Code eintauchen will, findet jedoch im kostenlosen Zusatzmaterial einige Codebeispiele. Aus dem Inhalt: - Umgang mit verschiedenen Zufallsquellen beim Training neuronaler Netze - Unterscheidung zwischen Encoder- und Decoder-Architekturen in großen Sprachmodellen (LLMs) - Verringerung von Überanpassung durch Daten- und Modellmodifikationen - Konstruktion von Konfidenzintervallen für Klassifizierer und Optimierung von Modellen mit begrenzten gelabelten Daten - Wählen zwischen verschiedenen Multi-GPU-Trainingsparadigmen und verschiedenen Arten von generativen KI-Modellen - Verstehen von Performancemetriken für die Verarbeitung natürlicher Sprache
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen