Machine Learning in Single-Cell RNA-seq Data Analysis
Raza, Khalid
Produktnummer:
1858eaf60a56f34c7dbbb7469e9fee8f29
Autor: | Raza, Khalid |
---|---|
Themengebiete: | Cell Fate Prediction Clustering in Single Cell Dimension Reduction in Single Cell Gene Expression Analysis Machine Learning in Genomics Machine Learning in Single Cell Analysis Single Cell Data Analysis Single Cell Multi-Omics Integration Single Cell RNA-seq Trajectory Inference |
Veröffentlichungsdatum: | 03.09.2024 |
EAN: | 9789819767021 |
Sprache: | Englisch |
Seitenzahl: | 88 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Machine Learning in Single-Cell RNA-seq Data Analysis"
This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen