Machine Learning Approaches to Non-Intrusive Load Monitoring
Bonfigli, Roberto, Squartini, Stefano
Produktnummer:
183253d76a74894e4c9ae6941e05730581
Autor: | Bonfigli, Roberto Squartini, Stefano |
---|---|
Themengebiete: | Deep Neural Network (DNN) Energy Monitoring Artificial Intelligence Energy Monitoring Machine Learning Factorial Hidden Markov Model (FHMM) Non-Intrusive Load Monitoring (NILM) Smart Grid |
Veröffentlichungsdatum: | 14.11.2019 |
EAN: | 9783030307813 |
Sprache: | Englisch |
Seitenzahl: | 135 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Machine Learning Approaches to Non-Intrusive Load Monitoring"
Research on Smart Grids has recently focused on the energy monitoring issue, with the objective of maximizing the user consumption awareness in building contexts on the one hand, and providing utilities with a detailed description of customer habits on the other. In particular, Non-Intrusive Load Monitoring (NILM), the subject of this book, represents one of the hottest topics in Smart Grid applications. NILM refers to those techniques aimed at decomposing the consumption-aggregated data acquired at a single point of measurement into the diverse consumption profiles of appliances operating in the electrical system under study. This book provides a status report on the most promising NILM methods, with an overview of the publically available dataset on which the algorithm and experiments are based. Of the proposed methods, those based on the Hidden Markov Model (HMM) and the Deep Neural Network (DNN) are the best performing and most interesting from the future improvement point of view. One method from each category has been selected and the performance improvements achieved are described. Comparisons are made between the two reference techniques, and pros and cons are considered. In addition, performance improvements can be achieved when the reactive power component is exploited in addition to the active power consumption trace.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen