Machine Learning Algorithms for Solution of Convection-Diffusion-Reaction Equation at Pore-Scale
Fokina, Daria
Produktnummer:
18bfb6d2306e7d4bb8a0bd2da514c3f6dc
Autor: | Fokina, Daria |
---|---|
Themengebiete: | Applied mathematicians, data scientists, chemical process engineers Machine learning parameter identification porous media reactive flow surrogate modeling |
Veröffentlichungsdatum: | 27.09.2024 |
EAN: | 9783839620281 |
Sprache: | Englisch |
Seitenzahl: | 143 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Fraunhofer Verlag |
Produktinformationen "Machine Learning Algorithms for Solution of Convection-Diffusion-Reaction Equation at Pore-Scale"
This work explores machine learning methods for reactive transport at pore-scale, common in many industrial applications. Reactive flow in catalytic filters is described by a parametric convection-diffusion-reaction partial differential equation. The first part focuses on neural network methods for solving these equations, specifically physics-informed neural networks and a modified deep Ritz method. Improved performance is observed, but computation time remains a bottleneck. The second part examines surrogate models for reactive transport problems in porous media, relevant to fuel cells, photovoltaic cells, and catalytic filters. The efficiency of filtration processes is evaluated using breakthrough curves. Surrogate models predict these curves for new parameters, using data from numerical simulations of an artificial filter geometry. The predictions are accurate across different regimes and provide a significant speed-up in the parameter identification problem.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen