Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning
Entezami, Alireza, Behkamal, Bahareh, De Michele, Carlo
Produktnummer:
18179b17c849dd43958ef1eabd584e5dfd
Autor: | Behkamal, Bahareh De Michele, Carlo Entezami, Alireza |
---|---|
Themengebiete: | Hamiltonian Monte Carlo SHM Structural Health Monitoring civil structures environmental and operational changes hybrid unsupervised learning methods |
Veröffentlichungsdatum: | 22.02.2024 |
EAN: | 9783031539947 |
Sprache: | Englisch |
Seitenzahl: | 110 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | A Practical Strategy via Structural Displacements from Synthetic Aperture Radar Images |
Produktinformationen "Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning"
This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and real-world data from the Tadcaster Bridge, UK, these methods show promise in addressing SAR-aided SHM challenges, offering practical tools for real-world applications. The book, thereby, presents a comprehensive suite of innovative strategies to advance the field of SHM.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen