Liouville-Riemann-Roch Theorems on Abelian Coverings
Kha, Minh, Kuchment, Peter
Produktnummer:
1810d78abcce9b4fceb468b792dc9acdba
Autor: | Kha, Minh Kuchment, Peter |
---|---|
Themengebiete: | Abelian Covering Elliptic Operator Index Formula Liouville Theorem Partial Differential Equations Periodic Operator Riemann-Roch Theorem Singularities of Solutions Spectrum |
Veröffentlichungsdatum: | 13.02.2021 |
EAN: | 9783030674274 |
Sprache: | Englisch |
Seitenzahl: | 96 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Liouville-Riemann-Roch Theorems on Abelian Coverings"
This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity.A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial.The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen