Linear Algebra with Python
Tsukada, Makoto, Kobayashi, Yuji, Kaneko, Hiroshi, Takahasi, Sin-Ei, Shirayanagi, Kiyoshi, Noguchi, Masato
Produktnummer:
183fb4068505b14f9fb0a4efe9c8385869
Autor: | Kaneko, Hiroshi Kobayashi, Yuji Noguchi, Masato Shirayanagi, Kiyoshi Takahasi, Sin-Ei Tsukada, Makoto |
---|---|
Themengebiete: | Dynamical System Fourier Expansion Generalized Inverse Jordan Normal Form Matrix Representation One-Parameter Semigroup Orthogonal Projection Peron-Frobenius Theorem Singular Value Decomposition Tensor Product |
Veröffentlichungsdatum: | 07.12.2024 |
EAN: | 9789819929535 |
Sprache: | Englisch |
Seitenzahl: | 309 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Untertitel: | Theory and Applications |
Produktinformationen "Linear Algebra with Python"
This textbook is for those who want to learn linear algebra from the basics. After a brief mathematical introduction, it provides the standard curriculum of linear algebra based on an abstract linear space. It covers, among other aspects: linear mappings and their matrix representations, basis, and dimension; matrix invariants, inner products, and norms; eigenvalues and eigenvectors; and Jordan normal forms. Detailed and self-contained proofs as well as descriptions are given for all theorems, formulas, and algorithms.A unified overview of linear structures is presented by developing linear algebra from the perspective of functional analysis. Advanced topics such as function space are taken up, along with Fourier analysis, the Perron–Frobenius theorem, linear differential equations, the state transition matrix and the generalized inverse matrix, singular value decomposition, tensor products, and linear regression models. These all provide a bridge to more specialized theories based on linear algebra in mathematics, physics, engineering, economics, and social sciences. Python is used throughout the book to explain linear algebra. Learning with Python interactively, readers will naturally become accustomed to Python coding. By using Python’s libraries NumPy, Matplotlib, VPython, and SymPy, readers can easily perform large-scale matrix calculations, visualization of calculation results, and symbolic computations. All the codes in this book can be executed on both Windows and macOS and also on Raspberry Pi.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen