Linear Algebra, Data Science, and Machine Learning
Calder, Jeff, Olver, Peter J.
Produktnummer:
181d63296a87a14b80a7a6422d82a88d55
Autor: | Calder, Jeff Olver, Peter J. |
---|---|
Themengebiete: | clustering deep learning dimension reduction graph theory machine learning neural network optimization regression support vector machines textbook machine learning |
Veröffentlichungsdatum: | 04.09.2025 |
EAN: | 9783031937637 |
Sprache: | Englisch |
Seitenzahl: | 639 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Linear Algebra, Data Science, and Machine Learning"
This text provides a mathematically rigorous introduction to modern methods of machine learning and data analysis at the advanced undergraduate/beginning graduate level. The book is self-contained and requires minimal mathematical prerequisites. There is a strong focus on learning how and why algorithms work, as well as developing facility with their practical applications. Apart from basic calculus, the underlying mathematics — linear algebra, optimization, elementary probability, graph theory, and statistics — is developed from scratch in a form best suited to the overall goals. In particular, the wide-ranging linear algebra components are unique in their ordering and choice of topics, emphasizing those parts of the theory and techniques that are used in contemporary machine learning and data analysis. The book will provide a firm foundation to the reader whose goal is to work on applications of machine learning and/or research into the further development of this highly active field of contemporary applied mathematics.To introduce the reader to a broad range of machine learning algorithms and how they are used in real world applications, the programming language Python is employed and offers a platform for many of the computational exercises. Python notebooks complementing various topics in the book are available on a companion GitHub site specified in the Preface, and can be easily accessed by scanning the QR codes or clicking on the links provided within the text. Exercises appear at the end of each section, including basic ones designed to test comprehension and computational skills, while others range over proofs not supplied in the text, practical computations, additional theoretical results, and further developments in the subject. The Students’ Solutions Manual may be accessed from GitHub. Instructors may apply for access to the Instructors’ Solutions Manual from the link supplied on the text’s Springer website.The book can be used in a junior or senior level course for students majoring in mathematics with a focus on applications as well as students from other disciplines who desire to learn the tools of modern applied linear algebra and optimization. It may also be used as an introduction to fundamental techniques in data science and machine learning for advanced undergraduate and graduate students or researchers from other areas, including statistics, computer science, engineering, biology, economics and finance, and so on.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen