Laser Scanning Systems in Highway and Safety Assessment
Pradhan, Biswajeet, Ibrahim Sameen, Maher
Produktnummer:
18d1eb13ec0a3946d7b740917c32111238
Autor: | Ibrahim Sameen, Maher Pradhan, Biswajeet |
---|---|
Themengebiete: | Deep Learning Geometric modeling of road networks LiDAR Neural Networks versus statistical methods Recurrent Neural Network Road Geometry Traffic Accidents Prediction Model Traffic Safety and Transportation data-driven science, modeling and theory building remote sensing/photogrammetry |
Veröffentlichungsdatum: | 18.04.2019 |
EAN: | 9783030103736 |
Sprache: | Englisch |
Seitenzahl: | 157 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | Analysis of Highway Geometry and Safety Using LiDAR |
Produktinformationen "Laser Scanning Systems in Highway and Safety Assessment"
This book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen