Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Keine Probleme mit Inversen Problemen

49,99 €*

Versandkostenfrei

Produktnummer: 16A3171623
Autor: Rieder, Andreas
Themengebiete: Computertomographie Mathematik / Technik, Ingenieurwissenschaften, Handwerk
Veröffentlichungsdatum: 30.10.2003
EAN: 9783528031985
Auflage: 2003
Sprache: Deutsch
Seitenzahl: 320
Produktart: Kartoniert / Broschiert
Verlag: Vieweg & Teubner Vieweg+Teubner Verlag
Untertitel: Eine Einführung in ihre stabile Lösung
Produktinformationen "Keine Probleme mit Inversen Problemen"
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Die Ursache der Abminderung ist die Dichte des Objekts. Ein anderes Beispiel stellt die Ultraschall-Tomographie dar: Hier wird die Streuung von Schallwellen an einem Objekt beobachtet, hervorgerufen durch die Form des Objekts, auf die man schließen möchte. Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen