Iterative Learning Control
Ahn, Hyo-Sung, Moore, Kevin L., Chen, YangQuan
Produktnummer:
18c90f16a86a4445d9bfffaf1b781bb6c6
Autor: | Ahn, Hyo-Sung Chen, YangQuan Moore, Kevin L. |
---|---|
Themengebiete: | Kalman-Filter algorithms learning linear optimization robot robotics uncertainty |
Veröffentlichungsdatum: | 19.10.2010 |
EAN: | 9781849966580 |
Sprache: | Englisch |
Seitenzahl: | 230 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer London |
Untertitel: | Robustness and Monotonic Convergence for Interval Systems |
Produktinformationen "Iterative Learning Control"
This monograph studies the design of robust, monotonically-convergent it- ative learning controllers for discrete-time systems. Iterative learning control (ILC) is well-recognized as an e?cient method that o?ers signi?cant p- formance improvement for systems that operate in an iterative or repetitive fashion (e. g. , robot arms in manufacturing or batch processes in an industrial setting). Though the fundamentals of ILC design have been well-addressed in the literature, two key problems have been the subject of continuing - search activity. First, many ILC design strategies assume nominal knowledge of the system to be controlled. Only recently has a comprehensive approach to robust ILC analysis and design been established to handle the situation where the plant model is uncertain. Second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergencecan be essential. This monograph addresses these two keyproblems by providingauni?ed analysisanddesignframeworkforrobust, monotonically-convergent ILC. The particular approach used throughout is to consider ILC design in the iteration domain, rather than in the time domain. Using a lifting technique, the two-dimensionalILC system, whichhas dynamics in both the time and - erationdomains,istransformedintoaone-dimensionalsystem,withdynamics only in the iteration domain. The so-called super-vector framework resulting from this transformation is used to analyze both robustness and monotonic convergence for typical uncertainty models, including parametric interval - certainties, frequency-like uncertainty in the iteration domain, and iterati- domain stochastic uncertainty.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen