Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Introduction to Data Governance for Machine Learning Systems

44,99 €*

Versandkostenfrei

Produktnummer: 186d736e5a8850441c9bea812b2dcffa87
Autor: Nandan Prasad, Aditya
Themengebiete: AI AI Ethics AI interetabty Bias Mitigation Data Goverance Data Privacy Data Quality ML model transparency Machine Learning
Veröffentlichungsdatum: 13.12.2024
EAN: 9798868810237
Sprache: Englisch
Seitenzahl: 966
Produktart: Unbekannt
Verlag: APRESS
Untertitel: Fundamental Principles, Critical Practices, and Future Trends
Produktinformationen "Introduction to Data Governance for Machine Learning Systems"
This book is the first comprehensive guide to the intersection of data governance and machine learning (ML) projects. As ML applications proliferate, the quality, reliability, and ethical use of data is central to their success, which gives ML data governance unprecedented significance. However, adapting data governance principles to ML systems presents unique, complex challenges. Author Aditya Nandan Prasad equips you with the knowledge and tools needed to navigate this dynamic landscape effectively. Through this guide, you will learn to implement robust and responsible data governance practices, ensuring the development of sustainable, ethical, and future-proofed AI applications.The book begins by covering fundamental principles and practices of underlying ML applications and data governance before diving into the unique challenges and opportunities at play when adapting data governance theory and practice to ML projects, including establishing governance frameworks, ensuring data quality and interpretability, preprocessing, and the ethical implications of ML algorithms and techniques, from mitigating bias in AI systems to the importance of transparency in models.Monitoring and maintaining ML systems performance is also covered in detail, along with regulatory compliance and risk management considerations. Moreover, the book explores strategies for fostering a data-driven culture within organizations and offers guidance on change management to ensure successful adoption of data governance initiatives. Looking ahead, the book examines future trends and emerging challenges in ML data governance, such as Explainable AI (XAI) and the increasing complexity of data. What You Will LearnComprehensive understanding of machine learning and data governance, including fundamental principles, critical practices, and emerging challengesNavigating the complexities of managing data effectively within the context of machine learning projectsPractical strategies and best practices for implementing effective data governance in machine learning projectsKey aspects such as data quality, privacy, security, and ethical considerations, ensuring responsible and effective use of dataPreparation for the evolving landscape of ML data governance with a focus on future trends and emerging challenges in the rapidly evolving field of AI and machine learning Who This Book Is ForData professionals, including data scientists, data engineers, AI developers, or data governance specialists, as well as managers or decision makers looking to implement or improve data governance practices for machine learning projects
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen