Interpretable and Annotation-Efficient Learning for Medical Image Computing
Produktnummer:
18b11c668a51bd45b7ad5957075baba818
Themengebiete: | artificial intelligence bioinformatics classification computer vision deep learning image analysis image processing image reconstruction image segmentation imaging systems |
---|---|
Veröffentlichungsdatum: | 04.10.2020 |
EAN: | 9783030611651 |
Sprache: | Englisch |
Seitenzahl: | 292 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Abbasi, Samaneh Cardoso, Jaime Cheplygina, Veronika Cruz, Ricardo Heller, Nicholas Henriques Abreu, Pedro Isgum, Ivana Jiang, Steve Le, Ngan Luu, Khoa Mateus, Diana Patel, Vishal Pereira Amorim, Jose Roysam, Badri Silva, Wilson Sznitman, Raphael Trucco, Emanuele Van Nguyen, Hien Zhou, Kevin |
Verlag: | Springer International Publishing |
Untertitel: | Third International Workshop, iMIMIC 2020, Second International Workshop, MIL3ID 2020, and 5th International Workshop, LABELS 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings |
Produktinformationen "Interpretable and Annotation-Efficient Learning for Medical Image Computing"
This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen