Integral Equations with Difference Kernels on Finite Intervals
Sakhnovich, Lev A.
Produktnummer:
18bd8b6ab29c5c4c3ca62fa099780a3afb
Autor: | Sakhnovich, Lev A. |
---|---|
Themengebiete: | Levy processes equations of the first kind generalized solutions method of operator identities triangular representation |
Veröffentlichungsdatum: | 18.05.2015 |
EAN: | 9783319164885 |
Auflage: | 2 |
Sprache: | Englisch |
Seitenzahl: | 226 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | Second Edition, Revised and Extended |
Produktinformationen "Integral Equations with Difference Kernels on Finite Intervals"
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression thathas proven to be fruitful. Furthermore we have added a new chapter on triangular representation, which is closely connected with previous results and includes a new important class of operators with non-trivial invariant subspaces. Numerous formulations and proofs have now been improved, and the bibliography has been updated to reflect more recent additions to the body of literature.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen