Improving Classifier Generalization
Sevakula, Rahul Kumar, Verma, Nishchal K.
Produktnummer:
18293ccad9bc70420eb50a542c2deea242
Autor: | Sevakula, Rahul Kumar Verma, Nishchal K. |
---|---|
Themengebiete: | Cancer classification Classification algorithms Class noise Generalization performance Predictive maintenance Transfer learning |
Veröffentlichungsdatum: | 30.09.2022 |
EAN: | 9789811950728 |
Sprache: | Englisch |
Seitenzahl: | 166 |
Produktart: | Gebunden |
Verlag: | Springer Singapore |
Untertitel: | Real-Time Machine Learning based Applications |
Produktinformationen "Improving Classifier Generalization"
This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen