Improved Classification Rates for Localized Algorithms under Margin Conditions
Blaschzyk, Ingrid Karin
Produktnummer:
188fe82ff424ec47a28601c3f4ff651d12
Autor: | Blaschzyk, Ingrid Karin |
---|---|
Themengebiete: | Classification Gaussian Kernel Hinge Loss Histogram Rule Learning Rates Localized SVMs Oracle Inequality Spatial Decomposition Support Vector Machines (SVMs) Tsybakov Noise |
Veröffentlichungsdatum: | 19.03.2020 |
EAN: | 9783658295905 |
Sprache: | Englisch |
Seitenzahl: | 126 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Fachmedien Wiesbaden GmbH |
Produktinformationen "Improved Classification Rates for Localized Algorithms under Margin Conditions"
Support vector machines (SVMs) are one of the most successful algorithms on small and medium-sized data sets, but on large-scale data sets their training and predictions become computationally infeasible. The author considers a spatially defined data chunking method for large-scale learning problems, leading to so-called localized SVMs, and implements an in-depth mathematical analysis with theoretical guarantees, which in particular include classification rates. The statistical analysis relies on a new and simple partitioning based technique and takes well-known margin conditions into account that describe the behavior of the data-generating distribution. It turns out that the rates outperform known rates of several other learning algorithms under suitable sets of assumptions. From a practical point of view, the author shows that a common training and validation procedure achieves the theoretical rates adaptively, that is, without knowing the margin parameters in advance.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen