Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons
Knaup, Julian
Produktnummer:
18e3786c88dec74c9c922e52b8abe3bc00
Autor: | Knaup, Julian |
---|---|
Themengebiete: | CVNN Class Assignment Classification Complex-Valued Fourier Transform MLMVN MVN Machine Learning Multi-Valued Neurons Phase |
Veröffentlichungsdatum: | 08.08.2022 |
EAN: | 9783658389543 |
Sprache: | Englisch |
Seitenzahl: | 77 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Fachmedien Wiesbaden GmbH |
Produktinformationen "Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons"
Multilayer neural networks based on multi-valued neurons (MLMVNs) have been proposed to combine the advantages of complex-valued neural networks with a plain derivative-free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. This book introduces a novel approach to assign multiple classes to numerous MVNs in the output layer. It was found that classes that possess similarities should be allocated to the same neuron and arranged adjacent to each other on the unit circle. Since MLMVNs require input data located on the unit circle, two employed transformations are reevaluated. The min-max scaler utilizing the exponential function, and the 2D discrete Fourier transform restricting to the phase information for image recognition. The evaluation was performed on the Sensorless Drive Diagnosis dataset and the Fashion MNIST dataset.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen