Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Image-based Feature and Prior Learning with Applications to Volumetric Segmentation of Fat-Water Magnetic Resonance Images

84,00 €*

Versandkostenfrei

Produktnummer: 181d1dcdc62cec4245922630cf66b0dba4
Autor: Fallah, Faezeh
Themengebiete: Active Inference Feature and Prior Learning Graph-based Optimization
Veröffentlichungsdatum: 09.07.2024
EAN: 9783843954853
Sprache: Englisch
Seitenzahl: 329
Produktart: Gebunden
Verlag: Dr. Hut
Produktinformationen "Image-based Feature and Prior Learning with Applications to Volumetric Segmentation of Fat-Water Magnetic Resonance Images"
Present work enables an automated volumetric segmentation of multiple tissues on fat-water MR images. These segmentations enable an automated volumetry, morphometry, and quantitative analysis of tissues on the images of a large cohort or longitudinal studies on automated diagnosis or efficient therapy planning. This is achieved by proposing and evaluating multiple segmentation approaches to allow the user to select the best approach according to the application, the desired accuracy and frugality, the explainability, and the transparency. In one approach, a hierarchical quadratic random forest classifier is followed by a stack of multiresolution neighborhood graphs and the graph of a hierarchical conditional random field to form a frugal, explainable, and transparent pipeline with the flexibility and controllability of handcrafted features and the ability to tackle the class imbalance and the overfitting. In another approach, a novel algorithm and a novel objective function are proposed to tackle label uncertainties, class imbalance, and overfitting in optimization of discriminative neural network classifiers of any architecture. The evaluations show the superiority of the proposed objective function to commonly used objective functions and the comparability of the proposed pipeline with the best optimized neural networks despite of its lower computational and data demand.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen