Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Hybrid Hand Sign Recognition for Real-Time Wearable Systems with Ambiguity Reduction

17,90 €*

Versandkostenfrei

Produktnummer: 1806a47c91859c4fb0be68330a21fdc3b2
Autor: Ben Atitallah, Bilel
Themengebiete: Ambiguity Gestik Hand signs Signalverarbeitung real-time
Veröffentlichungsdatum: 03.06.2024
EAN: 9783961002061
Sprache: Englisch
Seitenzahl: 174
Produktart: Kartoniert / Broschiert
Verlag: Universitätsverlag Chemnitz
Produktinformationen "Hybrid Hand Sign Recognition for Real-Time Wearable Systems with Ambiguity Reduction"
Hand sign recognition (HSR) has emerged as a significant field of research and development in the context of wearable systems and human machine interaction. The aim of this research is to investigate the potential of forearm-attached sensors to recognize hand signs and to propose a novel measurement approach for real-time HSR with reduced ambiguities. Three measurement methods are deeply investigated: Force Myography (FMG), Electrical Impedance Tomography (EIT), and surface Electromyography (EMG). The potential of these methods is evaluated in the context of American Sign Language (ASL). For a comprehensive comparative study, it is important to realize same conditions in the data collection. Therefore, a parallel data acquisition interface has been designed for simultaneous data collection. To assess the methods' capacity to distinguish between different hand signs independent of the classification algorithms, we propose a novel method for evaluating the ambiguities between different hand signs directly from the collected data. The application of this method to the collected data for all subjects shows, that EIT and FMG can better differentiate hand signs. Therefore, an FMG-EIT hybrid HSR method is proposed fusing the classification results of both methods based on their complementarity in solving ambiguous cases. The proposed method is able to achieve an average of real time accuracy of 94.16%, 82.5%, and 71.36% for the proposed fusion method, FMG and EIT respectively.
Bücherregal gefüllt mit juristischen Werken

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen